12 research outputs found

    FirstLight: Pluggable Optical Interconnect Technologies for Polymeric Electro-Optical Printed Circuit Boards in Data Centers

    Get PDF
    The protocol data rate governing data storage devices will increase to over 12 Gb/s by 2013 thereby imposing unmanageable cost and performance burdens on future digital data storage systems. The resulting performance bottleneck can be substantially reduced by conveying high-speed data optically instead of electronically. A novel active pluggable 82.5 Gb/s aggregate bit rate optical connector technology, the design and fabrication of a compact electro-optical printed circuit board to meet exacting specifications, and a method for low cost, high precision, passive optical assembly are presented. A demonstration platform was constructed to assess the viability of embedded electro-optical midplane technology in such systems including the first ever demonstration of a pluggable active optical waveguide printed circuit board connector. High-speed optical data transfer at 10.3125 Gb/s was demonstrated through a complex polymer waveguide interconnect layer embedded into a 262 mm × 240 mm × 4.3 mm electro-optical midplane. Bit error rates of less than 10-12 and optical losses as low as 6 dB were demonstrated through nine multimode polymer wave guides with an aggregate data bandwidth of 92.8125 Gb/s

    High-speed direct-modulation of InP microdisk lasers

    Get PDF
    We demonstrate for the first time high-speed direct-modulation of InP microdisk lasers by exploiting longitudinal mode competition. High-speed operation is demonstrated by means of S21 and PRBS modulation. We show open eye diagrams and bit-error rates up to 10 Gb/s

    Overview of the EU FP7-project HISTORIC

    Get PDF
    HISTORIC aims to develop and test complex photonic integrated circuits containing a relatively large number of digital photonic elements for use in e.g. all-optical packet switching. These photonic digital units are all-optical flip-flops based on ultra compact laser diodes, such as microdisk lasers and photonic crystal lasers. These lasers are fabricated making use of the heterogeneous integration of InP membranes on top of silicon on insulator (SOI) passive optical circuits. The very small dimensions of the lasers are, at least for some approaches, possible because of the high index contrast of the InP membranes and by making use of the extreme accuracy of CMOS processing. All-optical flip-flops based on heterogeneously integrated microdisk lasers with diameter of 7.5 mu m have already been demonstrated. They operate with a CW power consumption of a few mW and can switch in 60ps with switching energies as low as 1.8 fJ. Their operation as all-optical gate has also been demonstrated. Work is also on-going to fabricate heterogeneously integrated photonic crystal lasers and all-optical flip-flops based on such lasers. A lot of attention is given to the electrical pumping of the membrane InP-based photonic crystal lasers and to the coupling to SOI wire waveguides. Optically pumped photonic crystal lasers coupled to SOI wires have been demonstrated already. The all-optical flip-flops and gates will be combined into more complex photonic integrated circuits, implementing all-optical shift registers, D flip-flops, and other all-optical switching building blocks. The possibility to integrate a large number of photonic digital units together, but also to integrate them with compact passive optical routers such as AWGs, opens new perspectives for the design of integrated optical processors or optical buffers. The project therefore also focuses on designing new architectures for such optical processing or buffer chips

    A fast and comprehensive microdisc laser model applied to all-optical wavelength conversion

    Get PDF
    Microdisc lasers (MDLs) are an attractive option for on-chip laser sources, wavelength converters and even all-optical optical memory. We have developed a comprehensive model for the wavelength conversion in MDLs, which is compared with measurements

    Co-Package Technology Platform for Low-Power and Low-Cost Data Centers

    Get PDF
    We report recent advances in photonic–electronic integration developed in the European research project L3MATRIX. The aim of the project was to demonstrate the basic building blocks of a co-packaged optical system. Two-dimensional silicon photonics arrays with 64 modulators were fabricated. Novel modulation schemes based on slow light modulation were developed to assist in achieving an efficient performance of the module. Integration of DFB laser sources within each cell in the matrix was demonstrated as well using wafer bonding between the InP and SOI wafers. Improved semiconductor quantum dot MBE growth, characterization and gain stack designs were developed. Packaging of these 2D photonic arrays in a chiplet configuration was demonstrated using a vertical integration approach in which the optical interconnect matrix was flip-chip assembled on top of a CMOS mimic chip with 2D vertical fiber coupling. The optical chiplet was further assembled on a substrate to facilitate integration with the multi-chip module of the co-packaged system with a switch surrounded by several such optical chiplets. We summarize the features of the L3MATRIX co-package technology platform and its holistic toolbox of technologies to address the next generation of computing challenges

    Inverting and non-inverting operation of InP microdisc modulators

    Get PDF
    Reported is the inverting and non-inverting operation of indium phosphide (InP)-based microdisc modulators heterogeneously integrated on a silicon-on-insulator waveguide. The light transmitted through the waveguide can be modulated in an inverting and non-inverting manner depending on the bias conditions. Static extinction ratios and dynamic operation of the device up to 2.5 Gbit/s are demonstrated. Clean open eyes with extinction ratios better than 6 dB are shown and operation with a bit error rate below 1 x 10(-10) is demonstrated at 1.0 Gbit/s for both operation modes with a bias of only 1 Vpp

    A single InP-on-SOI microdisk for high-speed half-duplex on-chip optical links

    Get PDF
    We demonstrate for the first time that a single compact, electrically contacted indium phosphide based microdisk heterogeneously integrated on a silicon–on–insulator waveguide can be used as both a high-speed modulator and photo detector. We demonstrate high-speed operation up to 10 Gb/s and present bit-error rate results of both operation modes

    High-speed direct-modulation of InP microdisk lasers

    No full text
    \u3cp\u3eWe demonstrate for the first time high-speed direct-modulation of InP microdisk lasers by exploiting longitudinal mode competition. High-speed operation is demonstrated by means of S\u3csub\u3e21\u3c/sub\u3e and PRBS modulation. We show open eye diagrams and bit-error rates up to 10 Gb/s.\u3c/p\u3
    corecore